

A Brief Guide to Getting the Most from this Book

1 Read the Book

Feature	Description
Section-Opening	Every section opens with a scenario presenting a unique application of algebra or trigonometry in your life outside Scenarios
Detailed	Examples are clearly written and provide step-by-step Solutions. No steps are omitted, and each step is thoroughly Worked-Out Examples
Applications to the right of the mathematics.	
Using Real-World Data	Interesting applications from nearly every discipline, supported by up-to-date real-world data, are included in every section.
Great Question!	Answers to students' questions offer suggestions for problem solving, point out common errors to avoid, and provide informal hints and suggestions.
Brief Reviews	NEW to this edition. Brief Reviews cover skills you already learned but may have forgotten.
Achieving	NEW to this edition. Achieving Success boxes offer strategies for persistence and success in college mathematics courses.
Success	Voice balloons help to demystify algebra and trigonometry. They translate mathematical language into plain English, Coice Balloons clarify problem-solving procedures, and present alternative ways of understanding.
Learning	Every section begins with a list of objectives. Each objective is restated in the margin where the objective is covered.
Objectives	The screens displayed in the technology boxes show how graphing utilities verify and visualize algebraic and trigonometric results.

Feature
Section-Opening
Scenarios

Detailed
Worked-Out
Examples
Applications
Using Real-World
Data
Great Question!

Brief Reviews

Achieving
Success
Explanatory
Voice Balloons

Learning
Objectives
Technology

Description

Every section opens with a scenario presenting a unique application of algebra or trigonometry in your life outside the classroom.

Examples are clearly written and provide step-by-step explained to the right of the mathematics.
Interesting applications from nearly every discipline, supported by up-to-date real-world data, are included in every section.

Answers to students' questions offer suggestions for problem solving, point out common errors to avoid, and provide informal hints and suggestions learned but may have forgotten.
NEW to this edition. Achieving Success boxes offer strategies for persistence and success in college mathematics courses.

Voice balloons help to demystify algebra and trigonometry rey ways of understanding

Every section begins with a list of objectives. Each objective is The screens displayed in the technology boxes show trigonometric results.

Benefit

Realizing that algebra and trigonometry are everywhere will help motivate your learning. (See page 106.)

The blue annotations will help you understand the solutions by providing the reason why every algebraic or trigonometric step is true. (See page 674.)
Ever wondered how you'll use algebra and trigonometry? This feature will show you how algebra and trigonometry can solve real problems. (See page 265.)
By seeing common mistakes, you'll be able to avoid them This feature should help you not to feel anxious or threatened when asking questions in class. (See page 109.)
Having these refresher boxes easily accessible will help ease anxiety about skills you may have forgotten. (See page 478.)
Follow these suggestions to help achieve your full academic potential in college mathematics. (See page 586.)
Does math ever look foreign to you? This feature often translates math into everyday English. (See page 201.)

The objectives focus your reading by emphasizing what is most important and where to find it. (See page 633.)
Even if you are not using a graphing utility in the course, this feature will help you understand different approaches to problem solving. (See page 110.)

2 Work the Problems

Feature

Check Point Examples

Concept and Vocabulary Checks

Extensive and Varied Exercise Sets

Practice Plus
Problems

Retaining the Concepts

Preview Problems

Description

Each example is followed by a matched problem, called a Check Point, that offers you the opportunity to work a similar exercise. The answers to the Check Points are provided in the answer section.
These short-answer questions, mainly fill-in-the-blank and true/false items, assess your understanding of the definitions and concepts presented in each section.
An abundant collection of exercises is included in an Exercise Set at the end of each section. Exercises are organized within several categories. Your instructor will usually provide guidance on which exercises to work. The exercises in the first category, Practice Exercises, follow the same order as the section's worked examples.
This category of exercises contains more challenging problems that often require you to combine several skills or concepts.

NEW to this edition. Beginning with Chapter 2, each Exercise Set contains review exercises under the header "Retaining the Concepts."

Each Exercise Set concludes with three problems to help you prepare for the next section.

Benefit

You learn best by doing. You'll solidify your understanding of worked examples if you try a similar problem right away to be sure you understand what you've just read. (See page 739.)

It is difficult to learn algebra and trigonometry without knowing their special language. These exercises test your understanding of the vocabulary and concepts. (See page 229.)
The parallel order of the Practice Exercises lets you refer to the worked examples and use them as models for solving these problems. (See page 406.)

[^0]These exercises let you review previously covered material that you'll need to be successful for the forthcoming section. Some of these problems will get you thinking about concepts you'll soon encounter. (See page 660.)

3 Review for Quizzes and Tests

Feature	Description	Benefit
Mid-Chapter Check Points	At approximately the midway point in the chapter, an integrated set of review exercises allows you to review the skills and concepts you learned separately over several sections.	By combining exercises from the first half of the chapter, the Mid-Chapter Check Points give a comprehensive review before you move on to the material in the remainder of the chapter. (See page 776.)
Chapter Review Grids	Each chapter contains a review chart that summarizes the definitions and concepts in every section of the chapter. Examples that illustrate these key concepts are also referenced in the chart.	Review this chart and you'll know the most important material in the chapter! (See page 815.)
Chapter Review Exercises	A comprehensive collection of review exercises for each of the chapter's sections follows the grid.	Practice makes perfect. These exercises contain the most significant problems for each of the chapter's sections. (See page 209.)
Chapter Tests	Each chapter contains a practice test with approximately 25 problems that cover the important concepts in the chapter. Take the practice test, check your answers, and then watch the Chapter Test Prep Videos to see worked-out solutions for any exercises you miss.	You can use the chapter test to determine whether you have mastered the material covered in the chapter. (See page 213.)
Chapter Test Prep Videos	These videos contain worked-out solutions to every exercise in each chapter test and can be found in MyMathLab and on YouTube.	The videos let you review any exercises you miss on the chapter test.
Objective Videos	NEW to this edition. These fresh, interactive videos walk you through the concepts from every objective of the text.	The videos provide you with active learning at your own pace.
Cumulative Review Exercises	Beginning with Chapter 2, each chapter concludes with a comprehensive collection of mixed cumulative review exercises. These exercises combine problems from previous chapters and the present chapter, providing an ongoing cumulative review.	Ever forget what you've learned? These exercises ensure that you are not forgetting anything as you move forward. (See page 667.)

ALGEBRA AND TRIGONOMETRY

Robert Blitzer
Miami Dade College

Director, Portfolio Management: Anne Kelly	Executive Marketing Manager: Peggy Lucas
Courseware Portfolio Manager: Dawn Murrin	Marketing Assistant: Adiranna Valencia
Portfolio Management Administrator: Joseph Colella	Senior Author Support/Technology Specialist: Joe Vetere
Content Producer: Kathleen A. Manley	Production Coordination: Francesca Monaco/codeMantra
Managing Producer: Karen Wernholm	Text Design and Composition: codeMantra
Producer: Erica Lange	Illustrations: Scientific Illustrators
Manager, Courseware QA: Mary Durnwald	Photo Research and Permission Clearance: Cenveo Publisher Services
Manager, Content Development: Kristina Evans	Cover Design: Studio Montage
Product Marketing Manager: Claire Kozar	Cover Image: Ray_of_Light/Shutterstock

Marketing Assistant: Jennifer Myers

Copyright © 2018, 2014, 2010 Pearson Education, Inc. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights \& Permissions department, please visit www.pearsoned.com/permissions/.

Acknowledgments of third-party content appear on page C 1 , which constitutes an extension of this copyright page.

PEARSON, ALWAYS LEARNING, and MYMATHLAB are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data
Names: Blitzer, Robert.
Title: Algebra and trigonometry / Robert Blitzer, Miami Dade College.
Description: Sixth edition. | Hoboken, NJ : Pearson Prentice Hall, [2018] |
Includes answers to selected exercises. | Includes subject index.
Identifiers: LCCN 2016042563 | ISBN 9780134463216
Subjects: LCSH: Algebra-Textbooks.|Trigonometry-Textbooks.
Classification: LCC QA152.3.B63 2018 | DDC 512/.13 - dc23
LC record available at https://lcen.loc.gov/2016042563

CONTENTS

Preface vii
Acknowledgments
Dynamic Resources xil
To the Student xv
About the Author xvi
Applications Index xvii

Mid-Chapter Check Point 171

1.6 Other Types of Equations
 173

1.7 Linear Inequalities and Absolute Value Inequalities 189
Summary, Review, and Test 206
Review Exercises 209
Chapter 1 Test 213

P
 Prerequisites: Fundamental Concepts of Algebra 1

P. 1 Algebraic Expressions, Mathematical
Models, and Real Numbers 2
P. 2 Exponents and Scientific Notation 20
P. 3 Radicals and Rational Exponents 35
P. 4 Polynomials 51

Mid-Chapter Check Point 63
P. 5 Factoring Polynomials 64
P. 6 Rational Expressions 76

Summary, Review, and Test 89
Review Exercises 90
Chapter P Test 92

1. Equations and Inequalities 93

1.1 Graphs and Graphing Utilities 94

1.2 Linear Equations and Rational Equations 106
1.3 Models and Applications 124
1.4 Complex Numbers 139
1.5 Quadratic Equations 148

5
 Trigonometric Functions 541

5.1 Angles and Radian Measure 542
5.2 Right Triangle Trigonometry 559
5.3 Trigonometric Functions of Any Angle 576
5.4 Trigonometric Functions of Real Numbers; Periodic Functions 589
Mid-Chapter Check Point 597
5.5 Graphs of Sine and Cosine Functions 599
5.6 Graphs of Other Trigonometric Functions 620
5.7 Inverse Trigonometric Functions 633
5.8 Applications of Trigonometric Functions 649

Summary, Review, and Test 660
Review Exercises 663
Chapter 5 Test 666
Cumulative Review Exercises (Chapters 1-5) 667

6
 Analytic Trigonometry 669

6.1 Verifying Trigonometric Identities 670
6.2 Sum and Difference Formulas 681
6.3 Double-Angle, Power-Reducing, and Half-Angle Formulas 692

Mid-Chapter Check Point 703
6.4 Product-to-Sum and Sum-to-Product Formulas 704
6.5 Trigonometric Equations 713

Summary, Review, and Test 726
Review Exercises 727
Chapter 6 Test 729
Cumulative Review Exercises (Chapters 1-6) 729

Systems of Equations and Inequalities 823

8.1 Systems of Linear Equations in Two Variables 824
8.2 Systems of Linear Equations in Three Variables 843
8.3 Partial Fractions 851
8.4 Systems of Nonlinear Equations in Two Variables 862

Mid-Chapter Check Point 872
8.5 Systems of Inequalities 873
8.6 Linear Programming 885

Summary, Review, and Test 893
Review Exercises 895
Chapter 8 Test 898
Cumulative Review Exercises (Chapters 1-8) 898

Matrices
and Determinants 901
9.1 Matrix Solutions to Linear Systems 902
9.2 Inconsistent and Dependent Systems and Their Applications 916
9.3 Matrix Operations and Their Applications 925

PREFACE

I've written Algebra and Trigonometry, Sixth Edition, to help diverse students, with different backgrounds and future goals, to succeed. The book has three fundamental goals:

1. To help students acquire a solid foundation in algebra and trigonometry, preparing them for other courses such as calculus, business calculus, and finite mathematics.
2. To show students how algebra and trigonometry can model and solve authentic real-world problems.
3. To enable students to develop problem-solving skills, while fostering critical thinking, within an interesting setting.
One major obstacle in the way of achieving these goals is the fact that very few students actually read their textbook. This has been a regular source of frustration for me and for my colleagues in the classroom. Anecdotal evidence gathered over years highlights two basic reasons that students do not take advantage of their textbook:

- "I'll never use this information."
- "I can't follow the explanations."

I've written every page of the Sixth Edition with the intent of eliminating these two objections. The ideas and tools I've used to do so are described for the student in "A Brief Guide to Getting the Most from This Book," which appears at the front of the book.

What's New in the Sixth Edition?

- New Applications and Real-World Data. The Sixth Edition contains 63 worked-out examples and exercises based on new data sets, and 36 examples and exercises based on data updated from the Fifth Edition. Many of the new applications involve topics relevant to college students, including student-loan debt (Chapter P, Mid-Chapter Check Point, Exercise 31), grade inflation (Exercise Set 1.2, Exercises 97-98), median earnings, by final degree earned (Exercise Set 1.3, Exercises 3-4), excuses for not meeting deadlines (Chapter 1 Summary, Exercise 36), political orientation of college freshmen (Chapter 2 Summary, Exercise 53), sleep hours of college students (Exercise Set 8.1, Exercise 74), and the number of hours college students study per week, by major (Exercise Set 8.2, Exercises 33-34).
- Brief Reviews. Beginning with Chapter 1, the Brief Review boxes that appear throughout the book summarize mathematical skills, many of which are course prerequisites, that students have learned, but which many students need to review. This feature appears whenever a particular skill is first needed and eliminates the need for you to reteach that skill. For more detail, students are referred to the appropriate section and objective in a previous chapter where the topic is fully developed.
- Achieving Success. The Achieving Success boxes, appearing at the end of many sections in Chapters 1 through 8 , offer strategies for persistence and success in college mathematics courses.
- Retaining the Concepts. Beginning with Chapter 2, Section 2.1, each Exercise Set contains three or four review exercises under the header "Retaining the Concepts." These exercises are intended for students to review previously covered objectives in order to improve their understanding of the topics and to help maintain their mastery of the material. If students are not certain how to solve a review exercise, they can turn to the section and worked example given in parentheses at the end of each exercise. The Sixth Edition contains 216 new exercises in the "Retaining the Concepts" category.
- New Blitzer Bonus Videos with Assessment. Many of the Blitzer Bonus features throughout the textbook have been turned into animated videos that are built into the MyMathLab course. These videos help students make visual connections to algebra and trigonometry and the world around them. Assignable exercises have been created within the MyMathLab course to assess conceptual understanding and mastery. These videos and exercises can be turned into a media assignment within the Blitzer MyMathLab course.
- Updated Learning Guide. Organized by the textbook's learning objectives, this updated Learning Guide helps students make the most of their textbook for test preparation. Projects are now included to give students an opportunity to discover and reinforce the concepts in an active learning environment and are ideal for group work in class.
- Updated Graphing Calculator Screens. All screens have been updated using the TI-84 Plus C.

What Content and Organizational Changes Have Been Made to the Sixth Edition?

- Section P. 1 (Algebraic Expressions, Mathematical Models, and Real Numbers) follows an example on the cost of attending college (Example 2) with a new Blitzer Bonus, "Is College Worthwhile?"
- Section P. 6 (Rational Expressions) uses the least common denominator to combine rational expressions with different denominators, including expressions having no common factors in their denominators.
- Section 1.1 (Graphing and Graphing Utilities) contains a new example of a graph with more than one x-intercept (Example 5(d)).
- Section 1.4 (Complex Numbers) includes a new example on dividing complex numbers where the numerator is of the form $b i$ (Example 3). (This is then followed by an example picked up from the Sixth Edition where the numerator is of the form $a+b i$.)
- Section 1.5 (Quadratic Equations) provides a step-by-step procedure for solving quadratic equations by completing the square. This procedure forms the framework for the solutions in Examples 4 and 5.
- Section 1.5 (Quadratic Equations) contains an example on the quadratic formula (Example 6) where the formula is used to solve a quadratic equation with rational solutions, an equation that students can also solve by factoring.
- Section 1.5 (Quadratic Equations) has a new application of the Pythagorean Theorem (Example 11) involving HDTV screens. The example is followed by a new Blitzer Bonus, "Screen Math."
- Section 1.6 (Other Types of Equations) includes an example on solving an equation quadratic in form (Example 8),

$$
\left(x^{2}-5\right)^{2}+3\left(x^{2}-5\right)-10=0
$$

where u is a binomial $\left(u=x^{2}-5\right)$.

- Section 2.2 (More on Functions and Their Graphs) contains a new discussion on graphs with three forms of symmetry (Examples 2 and 3) before presenting even and odd functions. A new example (Example 4) addresses identifying even or odd functions from graphs.
- Section 2.3 (Linear Functions and Slope) includes a new Blitzer Bonus, "Slope and Applauding Together."
- Section 2.7 (Inverse Functions) replaces an example on finding the inverse of $f(x)=\frac{5}{x}+4$ with an example on finding the inverse of $f(x)=\frac{x+2}{x-3}($ Example 4$)$, a function with two occurrences of x.
- Section 3.5 (Rational Functions and Their Graphs) opens with a discussion of college students and video games. This is revisited in a new example (Example 9, "Putting the Video-Game Player Inside the Game") involving the Oculus Rift, a virtual reality headset that enables users to experience video games as immersive three-dimensional environments.
- Section 5.1 (Angles and Radian Measure) has new examples involving radians expressed in decimal form, including converting 2.3 radians to degrees (Example 3(d)) and finding a coterminal angle for a -10.3 angle (Example 7(d)). Additional Great Question! features provide hints for locating terminal sides of angles in standard position.
- Section 5.2 (Right Triangle Trigonometry) has a new Discovery feature on the use of parentheses when evaluating trigonometric functions with a graphing calculator, supported by new calculator screens throughout the section. A Great Question! has been added urging students not to become too calculator dependent.
- Chapter 6 opens with a new discussion on trigonometric functions and music.
- Section 8.1 (Systems of Linear Equations in Two Variables) contains a new discussion on problems involving mixtures, important for many STEM students. A new example (Example 8) illustrates the procedure for solving a mixture problem.
- Section 9.1 (Matrix Solutions to Linear Systems) has a new opening example (Example 1) showing the details on how to write an augmented matrix.
- Section 10.1 (The Ellipse) includes a new example (Example 5) showing the details on graphing an ellipse centered at (h, k) by completing the square.
- Section 10.3 (The Parabola) adds a new objective, moved from Section 10.4 (Rotation of Axes), on identifying conics of the form $A x^{2}+C y^{2}+D x+E y+F=0$ without completing the square, supported by an example (Example 7).
- Section 11.2 (Arithmetic Sequences) contains a new example (Example 3) on writing the general term of an arithmetic sequence.
- Section 11.7 (Probability) uses the popular lottery games Powerball (Example 5) and Mega Millions (Exercises $27-30$) as applications of probability and combinations.

What Familiar Features Have Been Retained in the Sixth Edition?

- Learning Objectives. Learning objectives, framed in the context of a student question (What am I supposed to learn?), are clearly stated at the beginning of each section. These objectives help students recognize and focus on the section's most important ideas. The objectives are restated in the margin at their point of use.
- Chapter-Opening and Section-Opening Scenarios. Every chapter and every section open with a scenario presenting a unique application of mathematics in students' lives outside the classroom. These scenarios are revisited in the course of the chapter or section in an example, discussion, or exercise.
- Innovative Applications. A wide variety of interesting applications, supported by up-to-date, real-world data, are included in every section.
- Detailed Worked-Out Examples. Each example is titled, making the purpose of the example clear. Examples are clearly written and provide students with detailed step-by-step solutions. No steps are omitted and each step is thoroughly explained to the right of the mathematics.
- Explanatory Voice Balloons. Voice balloons are used in a variety of ways to demystify mathematics. They translate algebraic and trigonometric ideas into everyday English, help clarify problem-solving procedures, present alternative ways of understanding concepts, and connect problem solving to concepts students have already learned.
- Check Point Examples. Each example is followed by a similar matched problem, called a Check Point, offering students the opportunity to test their understanding of the example by working a similar exercise. The answers to the Check Points are provided in the answer section.
- Concept and Vocabulary Checks. This feature offers short-answer exercises, mainly fill-in-the-blank and true/false items, that assess students' understanding of the definitions and concepts presented in each section. The Concept and Vocabulary Checks appear as separate features preceding the Exercise Sets.
- Extensive and Varied Exercise Sets. An abundant collection of exercises is included in an Exercise Set at the end of each section. Exercises are organized within nine category types: Practice Exercises, Practice Plus Exercises, Application Exercises, Explaining the Concepts, Technology Exercises, Critical Thinking Exercises, Group Exercises, Retaining the Concepts, and Preview Exercises. This format makes it easy to create well-rounded homework assignments. The order of the Practice Exercises is exactly the same as the order of the section's worked examples. This parallel order enables students to refer to the titled examples and their detailed explanations to achieve success working the Practice Exercises.
- Practice Plus Problems. This category of exercises contains more challenging practice problems that often require students to combine several skills or concepts. With an average of ten Practice Plus problems per Exercise Set, instructors are provided with the option of creating assignments that take Practice Exercises to a more challenging level.
- Mid-Chapter Check Points. At approximately the midway point in each chapter, an integrated set of Review Exercises allows students to review and assimilate the skills and concepts they learned separately over several sections.
- Graphing and Functions. Graphing is introduced in Chapter 1 and functions are introduced in Chapter 2, with an integrated graphing functional approach emphasized throughout the book. Graphs and functions that model data appear in nearly every
section and Exercise Set. Examples and exercises use graphs of functions to explore relationships between data and to provide ways of visualizing a problem's solution. Because functions are the core of this course, students are repeatedly shown how functions relate to equations and graphs.
- Integration of Technology Using Graphic and Numerical Approaches to Problems. Side-by-side features in the technology boxes connect algebraic and trigonometric solutions to graphic and numerical approaches to problems. Although the use of graphing utilities is optional, students can use the explanatory voice balloons to understand different approaches to problems even if they are not using a graphing utility in the course.
- Great Question! This feature presents a variety of study tips in the context of students' questions. Answers to questions offer suggestions for problem solving, point out common errors to avoid, and provide informal hints and suggestions. As a secondary benefit, this feature should help students not to feel anxious or threatened when asking questions in class.
- Chapter Summaries. Each chapter contains a review chart that summarizes the definitions and concepts in every section of the chapter. Examples that illustrate these key concepts are also referenced in the chart.
- End-of-Chapter Materials. A comprehensive collection of Review Exercises for each of the chapter's sections follows the Summary. This is followed by a Chapter Test that enables students to test their understanding of the material covered in the chapter. Beginning with Chapter 2, each chapter concludes with a comprehensive collection of mixed Cumulative Review Exercises.
- Blitzer Bonuses. These enrichment essays provide historical, interdisciplinary, and otherwise interesting connections to the algebra and trigonometry under study, showing students that math is an interesting and dynamic discipline.
- Discovery. Discovery boxes, found throughout the text, encourage students to further explore algebraic and trigonometric concepts. These explorations are optional and their omission does not interfere with the continuity of the topic under consideration.
I hope that my passion for teaching, as well as my respect for the diversity of students I have taught and learned from over the years, is apparent throughout this new edition. By connecting algebra and trigonometry to the whole spectrum of learning, it is my intent to show students that their world is profoundly mathematical, and indeed, π is in the sky.

x Preface

Acknowledgments

An enormous benefit of authoring a successful series is the broad-based feedback I receive from the students, dedicated users, and reviewers. Every change to this edition is the result of their thoughtful comments and suggestions. I would like to express my appreciation to all the reviewers, whose collective insights form the backbone of this revision. In particular, I would like to thank the following people for reviewing College Algebra, Algebra and Trigonometry, Precalculus, and Trigonometry.
Karol Albus, South Plains College
Kayoko Yates Barnhill, Clark College
Timothy Beaver, Isothermal Community College
Jaromir Becan, University of Texas-San Antonio
Imad Benjelloun, Delaware Valley College
Lloyd Best, Pacific Union College
David Bramlett, Jackson State University
Natasha Brewley-Corbin, Georgia Gwinnett College
Denise Brown, Collin College-Spring Creek Campus
David Britz, Raritan Valley Community College
Mariana Bujac-Leisz, Cameron University
Bill Burgin, Gaston College
Jennifer Cabaniss, Central Texas College
Jimmy Chang, St. Petersburg College
Teresa Chasing Hawk, University of South Dakota
Diana Colt, University of Minnesota-Duluth
Shannon Cornell, Amarillo College
Wendy Davidson, Georgia Perimeter College-Newton
Donna Densmore, Bossier Parish Community College
Disa Enegren, Rose State College
Keith A. Erickson, Georgia Gwinnett College
Nancy Fisher, University of Alabama
Donna Gerken, Miami Dade College
Cynthia Glickman, Community College of
Southern Nevada
Sudhir Kumar Goel, Valdosta State University
Donald Gordon, Manatee Community College
David L. Gross, University of Connecticut
Jason W. Groves, South Plains College
Joel K. Haack, University of Northern Iowa
Jeremy Haefner, University of Colorado
Joyce Hague, University of Wisconsin at River Falls
Mike Hall, University of Mississippi
Mahshid Hassani, Hillsborough Community College
Tom Hayes, Montana State University

Christopher N. Hay-Jahans, University of South Dakota
Angela Heiden, St. Clair Community College
Donna Helgeson, Johnson County Community College
Celeste Hernandez, Richland College
Gregory J. Herring, Cameron University
Alysmarie Hodges, Eastfield College
Amanda Hood, Copiah-Lincoln Community College
Jo Beth Horney, South Plains College
Heidi Howard, Florida State College at Jacksonville-South Campus
Winfield A. Ihlow, SUNY College at Oswego
Nancy Raye Johnson, Manatee Community College
Daniel Kleinfelter, College of the Desert
Sarah Kovacs, Yuba College
Dennine Larue, Fairmont State University
Mary Leesburg, Manatee Community College
Christine Heinecke Lehman, Purdue University
North Central
Alexander Levichev, Boston University
Zongzhu Lin, Kansas State University
Benjamin Marlin, Northwestern Oklahoma State University
Marilyn Massey, Collin County Community College
Yvelyne McCarthy-Germaine, University of New Orleans
David McMann, Eastfield College
Owen Mertens, Missouri State University-Springfield
James Miller, West Virginia University
Martha Nega, Georgia Perimeter College-Decatur
Priti Patel, Tarrant County College
Shahla Peterman, University of Missouri-St. Louis
Debra A. Pharo, Northwestern Michigan College
Gloria Phoenix, North Carolina Agricultural and Technical State University
Katherine Pinzon, Georgia Gwinnett College
David Platt, Front Range Community College
Juha Pohjanpelto, Oregon State University
Brooke Quinlan, Hillsborough Community College
Janice Rech, University of Nebraska at Omaha
Gary E. Risenhoover, Tarrant County College
Joseph W. Rody, Arizona State University
Behnaz Rouhani, Georgia Perimeter College-Dunwoody
Judith Salmon, Fitchburg State University
Michael Schramm, Indian River State College

Cynthia Schultz, Illinois Valley Community College
Pat Shelton, North Carolina Agricultural and Technical State University
Jed Soifer, Atlantic Cape Community College
Caroline Spillman, Georgia Perimeter College-Clarkston
Jonathan Stadler, Capital University
Franotis R. Stallworth, Gwinnett Technical College
John David Stark, Central Alabama Community College
Charles Sterner, College of Coastal Georgia
Chris Stump, Bethel College
Scott Sykes, University of West Georgia
Richard Townsend, North Carolina Central University
Pamela Trim, Southwest Tennessee Community College
Chris Turner, Arkansas State University
Richard E. Van Lommel, California State
University-Sacramento
Dan Van Peursem, University of South Dakota
Philip Van Veldhuizen, University of Nevada at Reno
Philip Veer, Johnson County Community College
Jeffrey Weaver, Baton Rouge Community College

Amanda Wheeler, Amarillo College
David White, The Victoria College
Tracy Wienckowski, University of Buffalo

Additional acknowledgments are extended to Dan Miller and Kelly Barber for preparing the solutions manuals; Brad Davis for preparing the answer section, serving as accuracy checker, and writing the new learning guide; the codeMantra formatting team for the book's brilliant paging; Brian Morris and Kevin Morris at Scientific Illustrators for superbly illustrating the book; Francesca Monaco, project manager; and Kathleen Manley, production editor, whose collective talents kept every aspect of this complex project moving through its many stages.
I would like to thank my editor at Pearson, Dawn Murrin, who, with the assistance of Joseph Colella, guided and coordinated the book from manuscript through production. Finally, thanks to Peggy Lucas and Claire Kozar for their innovative marketing efforts and to the entire Pearson sales force for their confidence and enthusiasm about the book.

Get the Most Out of MyMathLab"intाl

MyMathLab is the leading online homework, tutorial, and assessment program for teaching and learning mathematics, built around Pearson's best-selling content. MyMathLab helps students and instructors improve results; it provides engaging experiences and personalized learning for each student so learning can happen in any environment. Plus, it offers flexible and time-saving course management features to allow instructors to easily manage their classes while remaining in complete control, regardless of course format.

Preparedness

MyMathLab course solutions offer a complete College Algebra, Algebra \& Trigonometry, or Precalculus course with integrated review of select topics from developmental algebra. These courses help remediate students "just-in-time" and help with student retention of important concepts, ultimately boosting student success.

- Students begin each chapter by completing a Skills Check assignment to pinpoint which developmental topics, if any, they need to review.
- Students who demonstrate mastery of the review topics will move straight into the Algebra \& Trigonometry content.
- A personalized review homework assignment will provide extra support for the students who need it.
- Additional review materials (worksheets, videos, and more) are available in an Integrated Review section at the start of each chapter in MyMathLab.

MyMathLab with Integrated Review are appropriate for students who struggle with pre-requisite skills and for co-requisite course models. These Integrated Review MyMathLab courses are available for a variety of College Algebra, Algebra \& Trigonometry and Precalculus programs, as well as a variety of other disciplines.

Used by more than 37 million students worldwide, MyMathLab delivers consistent, measurable gains in student learning outcomes, retention, and subsequent course success.

MyMathLab Online Course for Algebra and Trigonometry by Robert Blitzer
 (access code required)

NEW! Video Program

A fresh, and all new, video program walks through the concepts from every objective of the text. Many videos provide an active learning environment where students try out their newly learned skill.

NEW! Workspace Assignments
Students can now show their work like never before! Workspace Assignments allow students to work through an exercise step-by-step, and show their mathematical reasoning as they progress. Students receive immediate
feedback after they complete each step, and helpful hints and videos offer guidance when they need it. When accessed via a mobile device, Workspace exercises use handwriting recognition software that allows students to naturally write out their answers. Each student's work is automatically graded and captured in the MyMathLab gradebook so instructors can easily pinpoint exactly where they need to focus their instruction.

Your Turn!
 Choose the option that best answers the question.

Perform the indicated operation, writing the result in standard form:

$$
(-4-8 i)-(-7+2 i)
$$

a. $-3-10 i$
b. $-11-6 i$
c. $-11+6 i$

NEW! Guided Visualizations

These HTML-based, interactive figures help students visualize the concepts through directed explorations and purposeful manipulation. They encourage active learning, critical thinking, and conceptual learning. They are compatible with iPad and tablet devices.
The Guided Visualizations are located in the Multimedia Library and can be assigned as homework with correlating assessment exercises. Additional Exploratory Exercises are available to help students think more conceptually about the figures and provide an excellent framework for group projects or lecture discussion.

Resources for Success

Instructor Resources

Additional resources can be downloaded from www.mymathlab.com or www.pearsonhighered.com or hardcopy resources can be ordered from your sales representative.

Annotated Instructor's Edition

Shorter answers are on the page beside the exercises. Longer answers are in the back of the text.

Instructor's Solutions Manual

Fully worked solutions to all textbook exercises.

PowerPoint® Lecture Slides

Fully editable lecture slides that correlate to the textbook.

Mini Lecture Notes

Additional examples and helpful teaching tips for each section.

TestGen®

Enables instructors to build, edit, print, and administer tests using a computerized bank of algorithmic questions developed to cover all the objectives of the text.

Student Resources

Additional resources to help student success are available to be packaged with the Blitzer textbook and MyMathLab access code.

Objective Level Videos

An all new video program covers every objective of the text and is assignable in MyMathLab. Many videos provide an active learning environment where students try out their newly learned skill.

Chapter Test Prep Videos

Students can watch instructors work through step-by-step solutions to all the Chapter Test exercises from the textbook. These are available in
 MyMathLab and on YouTube.

Student Solutions Manual

Fully worked solutions to odd-numbered exercises and available to be packaged with the textbook.

Learning Guide

The note-taking guide begins each chapter with an engaging application, and provides additional examples and exercises for students to work through for a greater conceptual understanding and mastery of topics.
New to this edition: classroom projects are included for each chapter providing the opportunity for collaborative work. The Learning Guide is available in PDF and customizable Word file formats in MyMathLab. It can also be packaged with the textbook and MyMathLab access code.

MathTalk Videos

Engaging videos connect mathematics to real-life events and interesting applications. These fun, instructional videos show students that math is relevant to their daily lives and are assignable in MyMathLab. Assignable exercises are available in MyMathLab for these videos to help students apply valuable information presented in the videos.

TO THE STUDENT

The bar graph shows some of the qualities that students say make a great teacher. It was my goal to incorporate each of these qualities throughout the pages of this book.

Explains Things Clearly

I understand that your primary purpose in reading Algebra and Trigonometry is to acquire a solid understanding of the required topics in your algebra and trigonometry course. In order to achieve this goal, I've carefully explained each topic. Important definitions and procedures are set off in boxes, and worked-out examples that present solutions in a step-by-step manner appear in every section. Each example is followed by a similar matched problem, called a Check Point, for you to try so that you can actively participate in the learning process as you read the book. (Answers to all Check Points appear in the back of the book.)

Funny \& Entertaining

Who says that an algebra and trigonometry textbook can't be entertaining? From our unusual cover to the photos in the chapter and section openers, prepare to expect the unexpected. I hope some of the book's enrichment essays, called Blitzer Bonuses, will put a smile on your face from time to time.

Helpful

I designed the book's features to help you acquire knowledge of algebra and trigonometry, as well as to show you how algebra and trigonometry can solve authentic problems that apply to your life. These helpful features include:

- Explanatory Voice Balloons: Voice balloons are used in a variety of ways to make math less intimidating. They translate algebraic and trigonometric language into everyday English, help clarify problem-solving procedures, present alternative ways of understanding concepts, and connect new concepts to concepts you have already learned.
- Great Question!: The book's Great Question! boxes are based on questions students ask in class. The answers to these questions give suggestions for problem solving, point out common errors to avoid, and provide informal hints and suggestions.
- Achieving Success: The book's Achieving Success boxes give you helpful strategies for success in learning algebra and trigonometry, as well as suggestions that can be applied for achieving your full academic potential in future college coursework.
- Chapter Summaries: Each chapter contains a review chart that summarizes the definitions and concepts in every section of the chapter. Examples from the chapter that illustrate these key concepts are also referenced in the chart. Review these summaries and you'll know the most important material in the chapter!

Passionate about the Subject

I passionately believe that no other discipline comes close to math in offering a more extensive set of tools for application and development of your mind. I wrote the book in Point Reyes National Seashore, 40 miles north of San Francisco. The park consists of 75,000 acres with miles of pristine surf-washed beaches, forested ridges, and bays bordered by white cliffs. It was my hope to convey the beauty and excitement of mathematics using nature's unspoiled beauty as a source of inspiration and creativity. Enjoy the pages that follow as you empower yourself with the algebra and trigonometry needed to succeed in college, your career, and your life.

Regards,

ABOUT THE AUTHOR

Bob Blitzer is a native of Manhattan and received a Bachelor of Arts degree with dual majors in mathematics and psychology (minor: English literature) from the City College of New York. His unusual combination of academic interests led him toward a Master of Arts in mathematics from the University of Miami and a doctorate in behavioral sciences from Nova University. Bob's love for teaching mathematics was nourished for nearly 30 years at Miami Dade College, where he received numerous teaching awards, including Innovator of the Year from the League for Innovations in the Community College and an endowed chair based on excellence in the classroom. In addition to Algebra and Trigonometry, Bob has written textbooks covering developmental mathematics, introductory algebra, intermediate algebra, college algebra, trigonometry, precalculus, and liberal
 arts mathematics, all published by Pearson. When not secluded in his Northern California writer's cabin, Bob can be found hiking the beaches and trails of Point Reyes National Seashore and tending to the chores required by his beloved entourage of horses, chickens, and irritable roosters.

APPLICATIONS INDEX

A
Accidents, automobile
accidents per day, age of driver and, 971
age of driver and, 169
probability of accident while intoxicated, 1141
Acid rain, 517
Actors, selection of, 1124, 1145
Adulthood, transition to, 939
Adult residential community costs, 1071, 1078

Advertising

online spending, 1148
sales and price and, 449-450
African Americans
percentage of cigarette smokers among, 895
percentage with high school diploma, 538
African life span, AIDS and, 850
Age(s)
arrests and drunk driving as function of, 430
average number of awakenings during night by, 104
body-mass index and, 884
calories needed to maintain energy by, 88
chances of surviving to various, 233
of driver, accidents per day and, 971
of driver, fatal accidents and, 169
fatal crashes and, 169
height as function of, 275, 278, 296
marriage and, 100-101, 138, 339
perceived length of time period and, 453
percentage of U.S. population never married, ages 25-29, 268, 270
percent body fat in adults by, 253
preferred age in a mate, 322-323
racial prejudice and, 61-62
systolic blood pressure and, 163-164
weight of human fetus and, 211
Aging rate, space travel and, $35,47,50$
AIDS/HIV
African life span and, 850
cases diagnosed (U.S.), 364-366, 368
number of Americans living with, 364
T cell count and, 216, 225-226
Aircraft/airplanes
approaching runway, vector describing, 802
direction angle of, given speed, 804
distance and angle of elevation of, 631
distance flown by, 574
ground speed of, 804
height of, 598
leaving airport at same time, distance between, 743, 747-748, 818
linear speed of propeller, 664
Mach speed of, 702
runway departure lineup, 1145
speed with/against the wind, 841
true bearing of, 803-804
vector describing flight of, 802
velocity vector of, 800
weight/volume constraints, 887-889
wind speed and direction angle exerted on, 803-804
Airports, distance between, 750

Alcohol and risk of accident, 511-512, 517
Alcohol use
drunk driving arrests, 430
moderate wine consumption and heart disease, 269-270
number of moderate users in U.S., 538
by U.S. high school seniors, 104
Alligator(s)
population of, 172
tail length given body length, 452
Altitude
atmospheric pressure and, 537
gained by hiker climbing incline, 664
increase on inclined road of, 574
American Idol, ratings of, 362
Amusia (tone deafness), sound quality and, 681, 683
Angle(s)
in architecture, 542
clock hands forming, 542,543
of elevation, 569-571, 573, 575, 598, 631, 658, $659,664,667,741-742$
Angular speed
of audio records, 555
of carousel, 554
of hard drive in computer, 554
of propeller on wind generator, 664
Annuities
compound interest on, 1088-1089, 1095
value of, 1095, 1144
Antenna, height on top of building, 666
Apogee/perigee of satellite's orbit, 988
Applause, decibel level of, 257
Arch bridge, 1055
Archer's arrow, path of, 356
Architecture
angles in, 542
conic sections in, 989, 999
Archway. See Semielliptical archway and truck clearance
Area
maximum, $358,361,410$
of oblique triangle, 738
of plane figure, 63
of region under curve, 648
of shaded region, 62,75
of triangle, 748,966
Area code possibilities, 1124
Arrests, drunk driving, 430
Artists, in documentary, 1119-1120
Aspirin, half-life of, 530, 1004
Asteroid detection, 862
Atmospheric pressure and altitude, 537
Audio records, angular speed and linear speed of, 555
Autism cases diagnosed, 1069
Automobiles
accidents per day, age of driver and, 971
annual price increases of, 136
average age, on U.S. roads, 136
computing work of pushing, 811,813
depreciation, 136, 233
drunk driving arrests as function of age, 430
fatal accidents and driver's age, 169
leaving city at same time, distance between, 818
possible race finishes, 1124
probability of accident while intoxicated, 1141
purchase options, 1124
rentals, 189-190, 200-201, 212, 430, 764
repair estimates, 205
required stopping distance, 431, 441-442
stopping distances, 431, 441-442
value over time, 1070
vehicle fatalities, driver's age and, 169
Average cost function, 424-425, 428
Average rate of change, 275-276, 296

B
Ball
angle of elevation and throwing distance of, 729
location of thrown, 1032
maximum height and throwing distance of, 851
thrown upward and outward, 361
Ball (attached to spring)
finding amplitude and period of motion of, 690
simple harmonic motion of, 653-654, 725, 729
Ball (height above ground), $849,851,914,1148$
baseball, 540
bounce height, 452
football, 17, 354-355, 914
maximum height, 821,851
when thrown from rooftop, 441
when thrown from top of Leaning Tower of Pisa, 439
Ballots, 1124
Bank and credit union charges, 205
Banking angle and turning radius of bicycle, 452
Baseball
angle of elevation and throwing distance of, 725
diamond diagonal length, 169
height of ball above ground, 540
path of, 1032, 1040-1041
pitcher's angle of turn to throw ball, 752
position as function of time, 1040-1041
Baseball contract, 1059, 1094
Baseball diamond, distance from pitcher's
mound to bases on, 751
Basketball, hang time in air when shooting, 187
Basketball court, dimensions of, 133
Bearings, 652-653, 667
of boat, 653, 659, 751
distance at certain, 659, 666
to fire from two fire stations, $739,741,1052$
of jet from control tower, 659
true, of plane, 803-804
between two cities, 666
Beauty
changes in cultural values of, 823
symmetry and, 238
Benefit concert lineup possibilities, 1124
Berlin Airlift, 885, 892
Bias, Implicit Association Test for, 51, 61-62
Bicycles
banking angle, 452
manufacturing, 233, 428, 838, 892

Biorhythms, 541, 576, 596, 617-619
Bird species population decline, 530
Birth(s), in U.S. from 2000 through 2009, 298, 303-304
Birthday, probability of same, 1141
Birthday, probability of sharing same, 323
Birthday cake, 51
Birthday date sharing, 704
Blood-alcohol concentration, 15-16, 19, 511-512, 517
Blood pressure, systolic, age and, 163-164
Blood volume and body weight, 445-446

Boats/ships

bearing of, 653, 659
changing, 751
distance traveled at certain, 659
to sail into harbor, 659
direction angle of, 820
distance from lighthouse, 666, 743
distance from pier, 751
ground speed, 820
leaving harbor at same time, distance between after three hours, 750
location between two radio towers, 1055
on tilted ramp, vector components of force on, 809,813
velocity of, 820
velocity vector of, 800
Body fat in adults by age and gender, percent, 253
Body-mass index, 452, 884
Body temperature, variation in, 665
Books
arranging on shelf, 1119
selections, 1124, 1147
Bottled water consumption, soda consumption vs., 840
Bouquet, mixture of flowers in, 872
Box dimensions, 393
Brain
growth of the human, 525
modeling brain activity, 631
Break-even analysis, 667, 832-833, 838, 872.
See also Cost and revenue functions/ break-even points
Breathing cycle, 599
modeling, 613-614
velocity of air flow in, 725
Bribery (Corruption Perceptions Index), 232
Bridge
arch, 1055
George Washington Bridge, 1056
suspension, parabolas formed by, 1056
Bridge coupon book/toll passes, 128-129, 136, 172, 205, 312, 632
Budgeting, groceries vs. health care, 279
Building
height of, 212, 569-570, 658, 659, 666, 667, 743
shadow cast by, 725
Building's shadow, 212
Bus fares, 136
Business ventures, 838
Butterflies, symmetry of, 753

C

Cable car, distance covered by, 742-743
Cable lengths between vertical poles, 188
Cable service, 1058
Cable television deals, 1058
Call of Duty video game, retail sales of, 518

Calorie-nutrient information, 896
Calories
needed by age groups and activity levels, 939
needed to maintain energy balance, 88
Camera
price reductions, 129-130, 1141
viewing angle for, 647
Canoe manufacturing, 838
Car(s). See Automobiles
Carbon-14 dating, 522, 529, 530
Carbon dioxide, atmospheric global warming and, 215, 264-266, 620, 632
Cardboard, length/width for box, 871
Cards. See Deck of 52 cards, probability and
Carousel, linear speed and angular speed of animals on, 554,558
Cave paintings, prehistoric, 530
CD selection for vacation trip, 1145
Celebrity earnings, 216-219
Cell phones, 210, 234, 839, 925
Celsius/Fahrenheit temperature interconversions, 17, 204
Centrifugal force, 450-451
Chaos, patterns of, 731, 777
Checking accounts, 205
Chernobyl nuclear power plant accident, 475
Chess moves, 1116
Chess tournament, round-robin, 168
Child mortality, literacy and, 255, 269
Children, modeling height of, 485, 491, 492, 513
Cholesterol
and dietary restrictions, 883
intake, 883
Cigarette consumption. See Smoking
Cigarette tax, 1069
Circle, finding length of arc on, 666, 711
Class structure of the United States, 969-970
Cliff, distance of ship from base of, 658
Clock(s)
angles formed by hands of, 542,543
degrees moved by minute hand on, 557
distance between tip of hour hand and ceiling, 618
distance between tips of hands at 10:00, 752
minute hand movement in terms of π, 557
Club officers, choosing, 1124, 1145
Coding, 941, 950-951, 953, 954
Coffee consumption, sleep and, 540
Coin tosses, 204, 1129, 1136-1137, 1139, 1140
College(s)
attendance, 1145
average dormitory changes at, 1080
percentage of U.S. high school seniors applying to more than three, 476
projected enrollment, 136, 211
salary after, 209
College assignments, excuses for not meeting deadlines, 210
College education
availability of, to qualified students, 136
average yearly earnings and, 135-136
cost of, 2, 4-5, 19
excuses for not meeting assignment deadlines, 210
government aid decreases, 211
women vs. men, 92

College graduates
among people ages 25 and older, in U.S., 476, 1080
median starting salaries for, 125-126
College majors, campus mergers and, 138
College students
excuses for not meeting assignment deadlines, 210
freshmen
attitudes about life goals, 126-127
claiming no religious affiliation, 217-218, 220
grade inflation, 121-122
political orientation, 339
gender ratios and campus mergers, 841
hours of study per week, by major, 849-850
interactive online games played by, 841
loan debt, 63
majors and campus mergers, 841
procrastination and symptoms of physical
illness among, 824,840
sleep and, 841
study abroad destinations, 1004
College tuition
government aid decreases, 211
student loan debt, 63
Collinear points, 966
Comedians, net worth of, 492
Comedy act schedule, 1124
Comets
Halley's Comet, 984, 999, 1051
intersection of planet paths and, 870,999
Committee formation, 1120, 1122, 1124
Commuters, toll discount passes, 128-129, 136, 172, 205, 312, 632
Compound interest, 471-475, 477, 512, 515-517, 1070, 1095, 1144
on annuity, 1088-1089, 1095
continuously compounded, 503, 512, 516, 538,539, 729, 899
investments, 535, 660
Computer(s)
angular speed of hard drive in, 554
computer-generated animation, 282
discounts, 304-305, 312
PC vs. tablet sales, 537
price before reduction, 130, 533
prices, 314
ratio of students to computers in U.S. public schools, 368
sale price, 75
Computer graphics, $901,925,934,935$
Concentration of mixture. See Mixture problems
Cone volume, 451
Conference attendees, choosing, 1122, 1124
Constraints, 886-891, 897
Continuously compounded interest, 503,512 , $516,538,539,729,899$
Cookies, supply and demand for, 839
Coronary heart disease, 531
Corporate income tax, 172
Corporation officers, choosing, 1119, 1124
Corruption Perceptions Index, 232
Cost(s). See also Manufacturing costs
of college education, 2, 4-5, 19
minimizing, 892
of raising child born in U.S., 1064-1065
truck rental, 205, 1058

Cost and revenue functions/break-even points,
832-833, 838, 872, 898
average, 424-425, 428
bike manufacturing, 428
break-even points, 838,898
for PDA manufacturing, 872
radio manufacturing, 311
roast beef sandwiches, 362
running shoe manufacturing, 428,833
virtual reality headset manufacturing, 424-425
wheelchair manufacturing, 425
Course schedule, options in planning, 1116
Cove, distance across, 751
Crane lifting boulder, computing work of, 813
Crate, computing work of dragging, 820
Crew (rowing), 841
Crime
decrease in violent, 270
mandatory minimum sentences for drug offenders, 840
violent crime rate and imprisonment, 871
Cryptograms, 950-951, 954. See also Coding
Cycloid, 1041

D

Daylight, number of hours of, 576, 596, 616, 618, 631, 725
Deadlines, excuses for not meeting, 210
Dead Sea Scrolls, carbon-14 dating of, 522
Death penalty, sentences rendered by U.S. juries, 381

Death rate, hours of sleep and, 843,847
Deaths
in the 20th century, 896
from 2000 through 2009, 298, 303-304
by snakes, mosquitoes, and snails, 234
Debt
national, 20, 31-32, 34, 35, 91
student loan, 63
Decay model for carbon-14, 529, 530
Decibels. See Sound intensity
Deck of 52 cards, probability and, 1130-1131, 1133-1134, 1139, 1145, 1147
Decoding a word or message, $951,953,954$
Degree-days, 1082
Delicate Arch, angle of elevation to determine height of, 575
Depreciation, 136, 233
Depression
exercise and, 282
sense of humor and, 106-107, 118-119
Desk manufacturing, 914
Die rolling outcomes, 1129-1130,1139, 1140,1145
Digital camera, price reduction for, 1141
Digital photography, 925, 934-935, 938, 939, 970
Dinosaur bones and potassium-40 dating, 530
Dinosaur footprints, pace angle and stride indicated by, 744, 750
Direction, 790-791
Distance
across cove, 751
across lake, 570, 573, 664, 750, 751
from base to top of Leaning Tower of Pisa, 741 braking, 849
between cars leaving city at same time, 818 of forest ranger from fire, 659
between houses at closest point, 1002
of island from coast, 658
of marching band from person filming it, 631
of oil platform from ends of beach, 741
between pairs of cities, 333
of rotating beam of light from point, 630, 631
safe, expressway speed and, 90
of ship from base of cliff, 658
of ship from base of Statue of Liberty, 658
of ship from lighthouse, 666
of ship from radio towers on coast, 1002
of stolen car from point directly below helicopter, 658
that skydiver falls in given time, 1097
traveled by plane, 574
between two points on Earth, 557
between two points on opposite banks of river, 741
between two trains leaving station at same time, 776
Distance traveled, combined walking and bus travel, 19
Diver's height above water, 441
Diversity index, 90
Diving board motion, modeling, 631
Divorce, age of wife at marriage and probability of, 100-101
DNA, structure of, 559
Doctor, visits to, 254
Domed ceiling, light reflectance and parabolic surface of, 1020
"Don't ask, don't tell" policy, 279-280
Drinks, order possibilities for, 1124
Drivers, age of. See under Age(s)
Driving accidents. See Accidents, automobile
Driving rate and time for trip, 447
Drug concentration, 277, 428
Drug dosage, child vs. adult, 729
Drug experiment volunteer selection, 1124
Drug offenders, mandatory minimum sentences for, 840
Drug tests, mandatory, probability of accurate results, 1140
Drug use among teenagers, 531
Drunk driving
age as function of arrests, 430
probability of accidents, 1141
Dual investments, 19, 130-131, 137, 172, 211, $254,343,899$

E

Eagle, height and time in flight, 338
Earnings. See Salary(-ies)
Earth
age of, 28
angular velocity of point on, 558
distance between two points on, 557
finding radius of, 660
motion of Moon relative to, 559
Earthquake
epicenter, 333
intensity, 536
intensity of, 478, 486
relief from, 885-889
simple harmonic motion from, 656
Economic impact of factory on town, 1096, 1145
Education. See also College education
level of, U.S. population, 1139
percentage of U.S. adults completing high school, 538
Election ballots, 1124
Electrical resistance, 147, 453, 1148

Elephant's weight, 517
Elevation, angle of, 569-571, 573, 575, 598, 631, 658-659, 664, 667, 741-742
Elevator capacity, 205, 883
Elk population, 540
Elliptical ceiling, 987
Elliptipool, 987
Encoding a message, 941, 950-951, 953, 954
Endangered species, 530
Equator, linear velocity of point on, 557
Equilibrium, forces in, 803
Ethnic diversity, 90
Exam grades, 205, 212, 939
Excuses, for not meeting college assignment deadlines, 210
Exercise
depression and, 282
heart rate and, 3
target heart rate ranges for, 18
Explosions, location of
arrival of sound, 1004
when recorded by two microphones, 999-1000, 1002, 1020
Exponential decay model, 530, 538, 539, 972
Exponential growth, 667
Expressway speeds and safe distances, 90
Eye color and gender, 1147

F
Factory, economic impact on town, 1096
Fahrenheit/Celsius temperature interconversions, 17, 204
Family, independent events in, 1137, 1139, 1146
Federal budget
deficit, 91 (See also National debt)
expenditures on human resources, 429
Federal Express, aircraft purchase decisions by, 892
Federal income tax, 234
Fencing
for enclosure, 867-868
maximum area inside, $358,361,363$
for plot of land, 898
Ferris wheel, 333
height above ground when riding, 597
linear speed of, 558
Fetal weight, age and, 211
Field, dimensions of, 897, 1148
Films. See Movies
Financial aid, college student, 211
Fire
distance of fire station from, 1052
distance of forest ranger from, 659
locating, from tower, $732,739,741,776,820$, 1052
Flagpole
height of, finding, 729
leaning, angle made with ground, 743
on top of building, height of, 659
Flood, probability of, 1146
Floor dimensions, 212, 870
Flu
epidemic, 523-524
inoculation costs, 88
outbreak on campus, 1096
time-temperature scenario, 235-236
vaccine mixture, 233
Food cost per item, 279, 850

Football

height above ground, 17, 354-355, 914
maximum height of, 1056
position as function of time, 1056
vector describing thrown, 802
Football field dimensions, 132-133
Force(s)
on body leaning against wall, 790,793
in equilibrium, 803
pulling cart up incline, 790
resultant, $803,819,820$
Foreign-born population in U.S., 172
FoxTrot comic strip, 49
Frame dimensions, 137
Freedom 7 spacecraft flight, 324
Free-falling object's position, 438-439, 441
Frequency, length of violin string and, 449
Freshmen. See under College students
Friendship 7, distance from Earth's center, 1051
Fuel efficiency, 235

G

Galaxies, elliptical, 1107
Games, online, college students and, 841
Garbage, daily per-pound production of, 63
Garden, width of path around, 170
Gasoline
average U.S. price, 380
gallons of premium sold, 813, 838-839
gallons of regular sold, 813
Gas pressure in can, 448
Gay marriage, U.S. public opinion on, 531, 840
Gay service members discharged from military, 279-280
Gender
average number of awakenings during night by, 104
bachelor's degrees awarded and, 92
calories needed to maintain energy by, 88 and careers, 902
college gender ratios and campus mergers, 841
eye color and, 1147
first-year U.S. college students claiming no religious affiliation by, 217-218, 220
housework and, 491
labor force participation by, 187
life expectancy by year of birth and, 268
percentage of United States population never married, ages 25-29 and, 268, 270
percent body fat in adults by, 253
wage gap by, 233
George Washington Bridge, height of cable between towers of, 1056
Global warming, 215, 264-266
Golden rectangles, 50
Government financial aid, college tuition, 211
Grade inflation, 121-122
Gravitational force, 450
Gravity model, 453
Groceries, budgeting for, 279
Ground speed, 804
Groups fitting into van, 1124
Gutter cross-sectional area, 170, 361
Guy wire attached to pole, angle made with ground and, 651

H
Half-life
aspirin, 1004
radioactive elements, 530, 538, 972
Xanax, 1042
Halley's Comet, 984, 999, 1051
Hamachiphobia, 531
Happiness
average level of, at different times of day, 323
per capita income and national, 269
Harmonic motion, simple. See Simple harmonic motion
HDTV screen dimensions, 164-165, 443
Headlight
parabolic surface of, 1056, 1057
unit design, 1056, 1057
Headset manufacturing costs, 411, 424-425
Health care
budgeting for, 279
gross domestic product (GDP) spent on, 516
savings needed for expenses during retirement, 531
Health club membership fees, 136
Heart beats over lifetime, 35
Heart disease
coronary, 531
moderate wine consumption and, 269-270
smoking and, 430
Heart rate
exercise and, 3,18
before and during panic attack, 380
Heat generated by stove, 453
Heat loss of a glass window, 453
Height
of antenna on top of building, 666
of ball above ground (See Ball [height above ground])
of building, 212, 569-570, 658, 659, 666, 667, 743
child's height modeled, 485, 491, 492, 513
diver's height above water, 441
of eagle, in terms of time in flight, 338
on Ferris wheel while riding, 597
of flagpole, 659, 729
as function of age, 275, 278, 296
healthy weight region for, $823,873,877-878$, 883
of leaning wall, finding, 742
maximum, 821, 1057, 1148
of Mt. Rushmore sculpture, 652
percentage of adult height attained by girl of given age, 491, 513
of plane, 598
of tower, finding, 650, 658, 789
of tree, finding, 776
weight and height recommendations/ calculations, 137, 452
Higher education costs, 1081
High school education, percentage of U.S. adults completing, 538
Hiking trails, finding bearings on, 653
Hill, magnitude of force required to keep car from sliding down, 803
Hispanic Americans
percentage of cigarette smokers among, 895
population growth, 538

HIV/AIDS

African life span and, 850
cases diagnosed (U.S.), 364-366, 368
number of Americans living with, 364
T cell count and, 216, 225-226
Hot-air balloon, distance traveled by ascending, 651, 659, 691
Hotel room types, 841
Households, mixed religious beliefs in, 204
House sales prices, 234, 1097
House value, inflation rate and, 476
Housework, 491, 1144
Human resources, federal budget expenditures on, 429
Humor, sense of, depression and, 106-107, 118-119
Hurricanes
barometric air pressure and, 517
probability, 1140
Hydrogen ion concentration, 517
I
Ice cream flavor combinations, 1120, 1124
Identical twins, distinguishing between, 842
Illumination intensity, 452, 453
Imaginary number joke, 147
Implicit Association Test, 51, 61-62
Imprisonment
mandatory minimum sentences for drug offenders, 840
violent crime rate and, 871
Income
highest paid TV celebrities, 216-219
length of time to earn $\$ 1000,124$
Income taxes
corporate, 172
federal, 234
Individual Retirement Account (IRA), 1088-1089, 1095, 1096, 1144
Inflation
cost of, 122
rate of, 476
Influenza. See Flu
Inn, charges before tax, 137
Inoculation costs for flu, 88
Insulation, rate of heat lost through, 667
Insurance, pet, 253
Intelligence quotient (IQ) and mental/ chronological age, 452
Interactive online games, college students and, 841
Interracial marriage, percentage of Americans in favor of laws prohibiting, 212
Investment(s)
accumulated value of, $472,475,512$
amounts invested per rate, 850
choosing between, 473
compound interest, 471-475, 477, 503,512, 515-517, 535, 538, 539, 660, 729, 899, 1095
for desired return, 212
dual, 19, 130-131, 137, 172, 211, 254, 343, 899
in greeting cards, 838
and interest rates, 19
maximizing expected returns, 893
money divided between high- and low-risk, 883
in play, 838
possibility of stock changes, 1145
IQ (intelligence quotient) and mental/
chronological age, 452
IRA. See Individual Retirement Account
Island, distance from coast of, 658

J

Jeans, price of, 312
Jet ski manufacturing, 898
Job applicants, filling positions with, 1146
Job offers, 1081, 1082, 1094
Jokes about books, 1125

K

Kidney stone disintegration, 984, 1020
Kidney stones, lithotriper treatment of, 1004
Kinetic energy, 453
Kite, angle made with ground of flying, 651, 1031
L
Labor force, participation by gender, 187
Labrador retrievers, color of, 60
Ladder, reach of, 169
Lake, distance across, 570, 573, 664, 750, 751
Land
fencing for (See Fencing)
rectangular plot, 211, 898
triangular plot, 752,818
Leaning Tower of Pisa, distance from base to top of, 741
Leaning wall, finding height of, 742
Learning curve, 122
Learning rate and amount learned, measuring, 821
Learning theory project, 524
Lemon tree, maximum yield from, 363
Length of violin string and frequency, 449
Letter arrangements, 1124
License plates, 1117
Life, most time-consuming activities during, 135
Life events, sense of humor and response to, 106-107, 118-119
Life expectancy, 135, 268
Light intensity of sunlight beneath ocean's surface, 515
Light reflectance and parabolic surface, 1020, 1056, 1057
Light waves, modeling, 665
Linear speed, 558
of airplane propeller, 664
of animals on carousel, 554, 558
of wind machine propeller, 555
Line formation, 1125
Literacy, child mortality and, 255, 269
Lithotriper, 1004
Little League baseball team batting order, 1117-1118
Living alone, number of Americans, 271, 274-275,342
Long-distance telephone charges, 137
Lottery
numbers selection, 1124, 1131-1132
probability of winning, 1115, 1131-1132, $1139,1140,1146,1147$
LOTTO
numbers selection, 1124
probability of winning, 1140
Loudness, 257, 453, 491, 502, 531, 539
Love, course of over time, 204
Luggage, volume of carry-on, 407-408
Lunch menus, 892, 1124

M

Mach speed of aircraft, 702
Mailing costs, 253

Mall browsing time and average amount spent, 464,465
Mammography screening data, 1127
Mandatory drug testing, probability of accurate results, 1140
Mandatory minimum sentences, 840
Mandelbrot set, 777, 786, 788, 789
Manufacturing and testing, hours needed for, 924
Manufacturing constraints, 886, 888, 889
Manufacturing costs. See also Cost and revenue functions/breakeven points
bicycles, 233
PDAs, 872
tents, 897
virtual reality headsets, 411, 424-425
wheelchair, 425
Maps, making, 571
Marching band, 842
Marijuana use by U.S. high school seniors, 104
Marital status
unmarried Americans (ages 25-29), 268, 270
U.S. adults (1970-2013), 839
U.S. population, ages 15 or older (2010), 1038, 1135-1136
Markup, 137
Marriage
interracial, percentage of Americans in favor of laws prohibiting, 212
spouses with different faiths, 204
Marriage age
of men, 339
preferred age in a mate, 322-323
of wife, probability of divorce and, 100-101
Marriage equality, U.S. public opinion on, 531, 840
Mass attached to spring, simple harmonic motion of, 655-656
Mathematics department personnel, random selection from, 1140
Mathematics exam problems, 1125
Maximum area, 358, 361, 410
Maximum height, 821, 1057, 1148
Maximum product, 361, 410
Maximum profit, 410, 889, 898
Maximum scores, 892
Maximum yield, 363
Median age. See under Age(s)
Medication dosage, adult vs. child/infant, 729
Memory retention, 491, 492, 516, 536
Mental illness, number of U.S. adults with, 538
Merry-go-round
linear speed of horse on, 598
polar coordinates of horses on, 763
Miles per gallon, 235
Military, gay service members discharged from, 279-280
Minimum product, 357
Miscarriages, by age, 531
Mixture problems, 122, 233, 834-836, 841, 898, 925
Modernistic painting consisting of geometric figures, 851
Moiré patterns, 1003
Moon, weight of person on, 452
Moth eggs and abdominal width, 382, 393
Mountain, measuring height of, 559, 571, 742-743

Movies
ranking, 1124
ticket price of, 210
top ten Oscar-winning, 313
Movie theater, finding best viewing angle in, 633, 647, 648
Mt. Rushmore sculpture, height of, 652
Multiple-choice test, 1116-1117, 1124, 1147
Multiplier effect, 1092
Music
amplitude and frequency of note's sine wave, 708
amusia and, 681, 683
modeling musical sounds, 655,660

N
National debt, 20,31-32, 34, 35, 91
National diversity index, 90
Natural disaster relief, 892
Nature, Fibonacci numbers found in, 1060
Navigation, 559. See also Bearings
Negative life events, sense of humor and response to, 106-107, 118-119
Negative numbers, square roots of, 139
Negative square roots, 147
Neurons, human brain vs. gorilla brain, 63
Newton's Law of Cooling, 533
Nutritional content, 914, 924

0

Oculus Rift headset manufacturing costs, 411, 424-425
Officers for Internet marketing consulting firm, choosing, 1118
Ohm's law, 147
One-person households. See Living alone, number of Americans
Online games, college students and, 841
Open box lengths and widths, 170
Orbit(s)
of comets, $870,984,999,1003,1051$
modeling, 1042
perigee/apogee of satellite's orbit, 988
of planets, $870,983,988$
Oscar-winning films, top ten, 313

P

Package, forces exerted on held, 799
Pads, cost of, 1148
Palindromic numbers, 1140
Panic attack, heart rate before and during, 380
Paragraph formation, 1124
Park, pedestrian route around, 169
Parking lot, dimensions of, 169
Parthenon at Athens, as golden rectangle, 50
Passwords, 1124, 1125
Pay. See Salary(-ies)
Pay phones in U.S., number of (2000-2006), 123
Payroll spent in town, 1145
PC (personal computer) sales, 537
PDA manufacturing costs and revenues, 872
Pedestrian route around park, 169
Pendulum swings, 1095
Pens
color choices, 1124
cost of, 1148
Per capita income and national happiness, 269
Perceived length of time period and age, 453

xxii Applications Index

Perigee/apogee of satellite's orbit, 988
Periodic rhythms, 713
Personal computer (PC) sales, 537
Pest-eradication program, 1096
Pets
insurance for, 253
spending on, 1072
pH
of human mouth after eating sugar, 428
pH scale, 516-517
Phone calls between cities, 444,453
Phonograph records, angular speed and linear speed of, 555
Photography. See Digital photography
Physician visits, 254
Piano keyboard, Fibonacci numbers on, 1060
Pier, finding length of, 742
Plane(s). See Aircraft/airplanes
Planets
elliptical orbits, 983, 988
modeling motion of, 1049, 1051
years, 187
Playground, dimensions of, 361
Playing cards. See Deck of 52 cards, probability and
Play production, break-even analysis of, 667
Poker hands, 1122
Pole, angle made by rope anchoring circus tent and, 667
Police officers, average salary of, 32
Political affiliation, academic major and, 1140
Political identification
college freshmen, 339
Implicit Association Test scores, 62
Pollution
air, 969
removal costs, 76
Pool. See Swimming pool
Pool table, elliptical, 1055
Population
Africa, 521
alligator, 172
Asia, 539
bird species in danger of extinction, 530
Bulgaria, 529
California, 515, 1094
Canada, 533
Colombia, 529
elk, 540
Europe, 872
exponential growth modeling, 529, 530
Florida, 885, 1145
foreign-born (U.S.), 172, 851
geometric growth in, 1084
Germany, 529, 539
gray wolf, 470-471
Hispanic, 538
Hungary, 518
India, 475, 529
Iraq, 529
Israel, 529
Japan, 529
Madagascar, 529
Mexico, 530
New Zealand, 530
Nigeria, 532
Pakistan, 529
Palestinian, 529
Philippines, 529

Russia, 529
in scientific notation, 30
single, 271-272,274-275
Texas, 515, 1095
tigers, worldwide, 379
Uganda, 533
United States, 520-521
age 65 and older, 532, 597
by gender, 311
percentage never married, ages 25-29, 268, 270
by race/ethnicity, 1075
total tax collections and, 34
and walking speed, 525
world, $92,312,518,526-528,530,531,539$, 1133
racial and ethnic breakdown of, 914-915
Population projections, 49-50, 136, 529
Powerball, probability of winning, 1131-1132
Price(s)
advertising and, 449-450
computer, 314,533
gasoline, 380
of a house, 234, 1097
jeans, 312
of movie ticket, 210
Price reductions, 129-130, 137, 138, 172, 210, 214,314, 1141
Pricing options, 206
Prisons
mandatory minimum sentences for drug offenders, 840
violent crime rate and imprisonment, 871
Problem solving
payments for, 138
time for, 450
Profit function, 362, 833-834, 838, 872, 886
Profits
department store branches, 312
maximizing, $362,410,892,897,898$
maximum daily, 889,915
maximum monthly, 892
on newsprint/writing paper, 897
production and sales for gains in, 205
total monthly, 892
Projectiles, paths of, 346, 1040-1041, 1056. See also Ball (height above ground);
Free-falling object's position
Propeller
of airplane, linear speed of, 664
on wind generator, angular speed of, 664

R

Racial diversity, 90
Racial prejudice, Implicit Association Test for, 51, 61-62
Radiation intensity and distance of radiation machine, 452
Radio(s), production/sales of, 838
Radio show programming, 1124
Radio stations
call letters of, 1124
locating illegal, 741
Radio towers on coast, distance of ship from, 1002
Radio waves, simple harmonic motion of, 659
Raffle prizes, 1124, 1125
Railway crossing sign, length of arcs formed by cross on, 557

Rain gutter cross-sectional area, 170, 361
Ramp
computing work of pulling box along, 813
force and weight of box being pulled along, 803
magnitude of force required to keep object from sliding down, 803
vector components of force on boat on tilted, 809, 813
wheelchair, angle of elevation of, 659
Rate of travel
airplane rate, 841
average rate and time traveled, 233
average rate on a round-trip commute, 88
rowing rate, 841
and time for trip, 447
walking speed and city population, 525
Razor blades sold, 850
Real-estate sales and prices (U.S.), 1097
Records, angular speed and linear speed of, 555
Rectangle
area of, 50
dimensions of, 169, 172, 212, 297, 442, 842, 867-868, 870, 871, 896, 898, 899, 967, 1097
dimensions of, maximizing enclosed area, 358
golden, 50
perimeter of, 50, 88, 123
Rectangular box dimensions, 393
Rectangular carpet dimensions, 214
Rectangular field dimensions, 211
Rectangular garden
dimensions of, 343
width of path around, 170
Rectangular sign dimensions, 170
Rectangular solid, volume of, 62
Redwood trees, finding height of, 742
Reflections, 287
Relativity theory, space exploration and, 35, 47, 50
Religious affiliation
first-year U.S. college students claiming no, 217-218, 220
spouses with different, 204
Rentals
car, 189-190, 200-201, 212, 430
rug cleaner, 136
truck, 205, 1058
Repair bills
cost of parts and labor on, 137
estimate, 205
Residential community costs, adult, 1071, 1078
Resistance, electrical, 147, 453, 1148
Restaurant tables and maximum occupancy, 841
Resultant forces, 803, 804, 819, 820
Revenue functions. See Cost and revenue functions/break-even points
Reversibility of thought, 64
Right triangle, isosceles, 170
Roads to expressway, length of, 188
Rolling motion, 1038
Roof of A-frame cabin, finding length of, 818
Rotating beam of light, distance from point, 630,631
Roulette wheel, independent events on, 1137
Rowing, speed with/against current, 841

Royal flush (poker hand), probability of, 1124
Rug cleaner rental rates, 136
Rug's length and width, 870
Runner's pulse, 517
S
Sailing angle to $10-\mathrm{knot}$ wind, sailing speed and, 763,774
Salary(-ies)
anticipated earnings, 1095
choosing between pay arrangements, 343
college education and, 135-136
college graduates with undergraduate degrees, 125-126
comparing, 1080-1082
earnings with overtime, 540
first job after college, 209
gross amount per paycheck, 137
lifetime computation, 1088, 1095
police officers, average, 32
salesperson's earnings/commissions, 210, 1148
in sixth year, 1144
summer sales job, 343
total, 1081, 1095, 1144, 1146
total weekly earnings, 892
wage gap in, by gender, 233
weekly, 123
for women, 902
Sale prices, 75. See also Price reductions
Salesperson's earnings, 210, 1148
Sales volume/figures
movie tickets, 210
PCs vs. tablets, 537
price/advertising and, 449-450
real estate, 1097
theater ticket, 850
video games, 518
Satellite, perigee/apogee of orbit, 988
Satellite dish, placement of receiver for, 1056
Savings
and compound interest, 515-516
geometric sequencing, 1094, 1095
needed for health-care expenses during retirement, 531
total, 1095
Scattering experiments, 1002
Scheduling appearances, ways of, 1124,1125
Semielliptical archway and truck clearance, 984, 987, 1004, 1020, 1055
Sense of humor, depression and, 106-107
Sentencing guidelines for drug offenders, 840
Shaded region areas, 62, 75
Shading process, 1096
Shadow, length of, 802
Ship(s). See Boats/ships
Shipping costs, 339. See also Mailing costs
Ship tracking system, 870
"Shortest time" problems, 1038
Shot put
angle and height of, 360-361
path of, given angle, 169
throwing distance, 702, 742
Shower, water used when taking, 1004
Simple harmonic motion, 821, 1148
ball attached to spring, 653-654, 725, 729
earthquake, 656
modeling, 653-656, 659, 666, 667
radio waves, 659
tuning fork, 659

Skeletons, carbon-14 dating of, 530
Skydiver's fall, 446-447, 1097
Sled, pulling
computing work of, 812
forces exerted, 802
Sleep
average number of awakenings during night,
by age and gender, 104
coffee consumption and, 540
college students and, 841
death rate and hours of, 843, 847
hours of, on typical night, 1126
Smoking
among various portions of U.S. population, 895
deaths and disease incidence ratios, 429 , 1112-1113
and heart disease, 430
Soccer field dimension, 137
Social Security benefits/costs, 213
Soda consumption, bottled water consumption vs., 840
Solar energy industry, number of U.S. jobs in, 538
Sonic boom, hyperbolic shape of, 999
Sound
amplitude and frequency of, 708
locating explosion by arrival of, 1004
from touching buttons on touch-tone phone, 704, 710
Sound intensity, 257, 453, 491, 502, 531, 539, 708
Sound quality, amusia and, 681, 683
Space flight/travel
aging rate and, $35,47,50$
Freedom 7 spacecraft, 324
relativity theory and, $35,47,50$
Spaceguard Survey, 1003
Speed. See also Rate of travel
angular, 554, 664
linear, 558
of airplane propeller, 664
of animals on carousel, 554, 558
of wind machine propeller, 555
Mach speed of aircraft, 702
Spinner, probability of pointer landing in specific way, $1135,1139,1146,1147$
Spouses with different faiths, 204
Spring(s)
force required to stretch, 452
simple harmonic motion of object attached to, 653-656
ball, 653-654, 725, 729
distance from rest position, 657, 666
frequency of, 657
maximum displacement of, 657
phase shift of motion, 657
time required for one cycle, 657
Square, length of side of, 170
Stadium seats, 1081
Standbys for airline seats, 1124
Statue of Liberty, distance of ship from base of, 658
Stolen plants, 138
Stomach acid, pH of, 517
Stonehenge, raising stones of, 574
Stopping distances
for cars, 431, 441-442
for trucks, 442
Stories, matching graphs with, 105

Stress levels, 359
String length and frequency, 449
Strontium-90, 523
Student government elections, 1120
Student loan debt, 63
Students, probability of selecting specific, 1147
Study, hours per week, 849-850
Sun, finding angle of elevation of, 570-571, 573, 598, 659, 664
Sunlight, intensity beneath ocean's surface, 515
Sunscreen, exposure time without burning and, 2
Supply and demand, 838-839
Supply-side economics, 394
Surface sunlight, intensity beneath ocean's surface, 515
Surveying
bearings in, 652-653
to find distance between two points on opposite banks of river, 741
Sushi, population who won't try, 531
Suspension bridges, parabolas formed by, 1056
Swimming pool
dimensions, 137, 169
path around, 137, 170
tile border, 171
Synthesizers, musical sounds modeled by, 649, 655
Systolic blood pressure, age and, 163-164

T

Table tennis table, dimensions of, 896
Tablet sales, 537
Talent contest, picking winner and runner-up in, 1125
Target, probability of hitting, 1140
Target heart rate for exercise, 18
Task mastery, 502, 537
Tax code, U.S., increase in number of pages in, 477
Taxes
bills, 205
cigarette, 1069
federal tax rate schedule for tax owed, 253
government spending and, 34
income
corporate, 172
federal, 234
inn charges before, 137
rebate and multiplier effect, 1092, 1096
tax rate percentage and revenue, 394
U.S. population and total tax collections, 34

Teacher's aide, hourly pay for, 891
Teenage drug use, 531
Telephone(s)
calls between cities, 444, 453
land lines vs. cell phones, 839
long-distance charges, 137
number of pay phones in U.S. (2000-2006), 123
sound from touching buttons on, 704,710
Telephone numbers
seven-digit, 1147
total possible, in United States, 1117
Telephone plans
cellular, 210, 234, 925
long-distance charges, 137
per-minute costs, 245-246, 252
texting, 123, 135, 205, 214

Telephone pole

angle between guy wire and, 574
tilted, finding length of, 742
Television
HDTV screen dimensions, 164-165, 443
manufacturing profits and constraints, 891
programming of movies, 1124
sale prices, 75
screen area, 165
screen dimensions, 164-165, 443, 870
viewing, by annual income, 184
Temperature
average monthly, 618, 619
body, variation in, 665
of cooling cup of coffee, 536
degree-days, 1082
and depth of water, 452
in enclosed vehicle, increase in, 487-488
Fahrenheit-Celsius interconversions, 17, 204
global warming, 215, 264-266
home temperature as function of time, 296-297
increase in an enclosed vehicle, 531
as magnitude, 790
Newton's Law of Cooling, 533
time-temperature flu scenario, 235-236
Tennis club payment options, 138
Tennis court dimensions, 137
Texting plans, 123, 135, 205, 214
Theater attendance, maximizing revenue from, 892
Theater seats, 1081,1144
Theater ticket sales, 850
Throwing distance, 692, 702
angle of elevation of, 725, 729
maximum height of thrown ball, 821
shot put, 702, 742
Ticket prices/sales, 210, 850
Tides, behavior of, 576, 593, 596
modeling cycle of, 615
modeling water depth and, 618
Tigers, worldwide population, 379
Time, perceived length of, 453
Time traveled, average rate and, 233
Tobacco use. See Smoking
Tolls, 128-129, 136, 172, 205, 312, 632
Touch-tone phone, sounds from touching buttons on, 704, 710
Tower
angle of elevation between point on ground and top of, 667, 789
height of, finding, 650, 658, 659, 789
length of two guy wires anchoring, 751
Traffic control, 916, 920-925, 970
Trains leaving station at same time, distance between, 776
Transformations of an image, 935-936, 938, 970
Tree, finding height of, 776
Triangle
area of, $738,748,966$
dimensions of, 940, 954, 988, 1042, 1141
isosceles, 170, 841
oblique, 738
right, 861
Triangular piece of land
cost of, 752, 818
length of sides of, 818
Trucks
clearance under semielliptical archway, 984, 987, 1004, 1020, 1055
rental costs, 205, 1058
stopping distances required for, 442
Tugboats towing ship, resultant force of two, 803, 804
Tuition, government aid for, 211
Tuning fork
eardrum vibrations from, 691
simple harmonic motion on, 659
Tutoring, hourly pay for, 891
TV. See Television

V

Vacation lodgings, 883
Vacation plan packages, cost of, 896
Vaccine, mixture for flu, 233
Value of an annuity, 1095, 1144
Van, groups fitting into, 1124
Vehicle fatalities, driver's age and, 169
Velocity vector
of boat, 800
of plane, 800
of wind, $799,800,803-804$
Vertical pole supported by wire, 172,214
Video games, retail sales of, 518
Videos rented, number of one-day and three-day, 813
Violent crime
decrease in, 270
imprisonment and, 871
Violin string length and frequency, 449
Virtual reality headset manufacturing costs, 411, 424-425
Vitamin content, 914, 924
Volume (sound). See Sound intensity
Volume (space)
of carry-on luggage, 407-408
of cone, 451
for given regions, 75
of open box, 62
of solid, 409
Voters, age and gender of, 939

W

Wage gap, 233
Wages. See Salary(-ies)
Wagon, computing work of pulling, 811, 813, 820
Walking speed and city population, 525
Wardrobe selection, 1115
Washington Monument, angle of elevation to top of, 574

Water
pressure and depth, 444-445
temperature and depth, 452
used in a shower, 446
used when taking a shower, 1004
Water pipe diameter, number of houses served and size of, 452
Water wheel, linear speed of, 558
Weight
blood volume and body, 445-446
of elephant, 517
of great white shark, cube of its length and, 447
healthy, for height and age, 823,873 , 877-878, 883
and height recommendations/calculations, 137, 452
of human fetus, age and, 211
of person on Moon, 452
Weightlifting, 532, 805, 814
Wheelchair business
manufacturing costs, 425
profit function for, 834
revenue and cost functions for, 832-834
Wheelchair ramp
angle of elevation of, 659
vertical distance of, 169
Wheel rotation, centimeters moved with, 557
Whispering gallery, 983, 988, 1057
White House, rooms, bathrooms, fireplaces and elevators in, 915
Will distribution, 138
Wind, velocity vector of, 799, 800, 803-804
Wind force, 453
Wind generator
angular speed of propeller on, 664
linear speed of propeller of, 555
Wind pressure, 453
Wine consumption, heart disease and, 269-270
Wing span of jet fighter, finding, 743
Wire length, 170
Witch of Agnesi, 1041
Women. See also Gender
average level of happiness at different times of day, 323
college gender ratios and campus mergers, 841
and housework, 491
in the labor force, 187
in U.S. workforce, 902
Work, 811-813
crane lifting boulder, 813
dragging crate, 820
pulling box up ramp, 813
pulling wagon, $811,813,820$
pushing car, 811,813
of weightlifter, 805,814
Work force, participation by gender, 187
Writing pads, cost of, 1148
\mathbf{X}
Xanax, half-life of, 530, 1042

Prerequisites: Fundamental Concepts of Algebra

Section P. 1

What am I supposed to learn?
 After studying this section, you should be able to:

(1) Evaluate algebraic expressions.
(2) Use mathematical models.
(3) Find the intersection of two sets.
(4) Find the union of two sets.
(5) Recognize subsets of the real numbers.
(6) Use inequality symbols.
(7) Evaluate absolute value.
(8) Use absolute value to express distance.
(9) Identify properties of the real numbers.
(10) Simplify algebraic expressions.

Algebraic Expressions, Mathematical Models, and Real Numbers

How would your lifestyle change if a gallon of gas cost $\$ 9.15$? Or if the price of a staple such as milk was $\$ 15$? That's how much those products would cost if their prices had increased at the same rate college tuition has increased since 1980. (Source: Center for College Affordability and Productivity) In this section, you will learn how the special language of algebra describes your world, including the skyrocketing cost of a college education.

Algebraic Expressions

Algebra uses letters, such as x and y, to represent numbers. If a letter is used to represent various numbers, it is called a variable. For example, imagine that you are basking in the sun on the beach. We can let x represent the number of minutes that you can stay in the sun without burning with no sunscreen. With a number 6 sunscreen, exposure time without burning is six times as long, or 6 times x. This can be written $6 \cdot x$, but it is usually expressed as $6 x$. Placing a number and a letter next to one another indicates multiplication.

Notice that $6 x$ combines the number 6 and the variable x using the operation of multiplication. A combination of variables and numbers using the operations of addition, subtraction, multiplication, or division, as well as powers or roots, is called an algebraic expression. Here are some examples of algebraic expressions:

$$
x+6, \quad x-6, \quad 6 x, \quad \frac{x}{6}, \quad 3 x+5, \quad x^{2}-3, \quad \sqrt{x}+7
$$

Many algebraic expressions involve exponents. For example, the algebraic expression

$$
4 x^{2}+330 x+3310
$$

approximates the average cost of tuition and fees at public U.S. colleges for the school year ending x years after 2000. The expression x^{2} means $x \cdot x$ and is read " x to the second power" or " x squared." The exponent, 2 , indicates that the base, x, appears as a factor two times.

Exponential Notation

If n is a counting number ($1,2,3$, and so on),

b^{n} is read "the nth power of b " or " b to the nth power." Thus, the nth power of b is defined as the product of n factors of b. The expression b^{n} is called an exponential expression. Furthermore, $b^{1}=b$.

For example,

$$
8^{2}=8 \cdot 8=64, \quad 5^{3}=5 \cdot 5 \cdot 5=125, \quad \text { and } \quad 2^{4}=2 \cdot 2 \cdot 2 \cdot 2=16
$$

Evaluating Algebraic Expressions

Evaluating an algebraic expression means to find the value of the expression for a given value of the variable.

Many algebraic expressions involve more than one operation. Evaluating an algebraic expression without a calculator involves carefully applying the following order of operations agreement:

The Order of Operations Agreement

1. Perform operations within the innermost parentheses and work outward. If the algebraic expression involves a fraction, treat the numerator and the denominator as if they were each enclosed in parentheses.
2. Evaluate all exponential expressions.
3. Perform multiplications and divisions as they occur, working from left to right.
4. Perform additions and subtractions as they occur, working from left to right.

EXAMPLE 1 Evaluating an Algebraic Expression

Evaluate $7+5(x-4)^{3}$ for $x=6$.
SOLUTION

$$
\begin{aligned}
7+5(x-4)^{3} & =7+5(6-4)^{3} & & \text { Replace } x \text { with } 6 . \\
& =7+5(2)^{3} & & \text { First work inside parentheses: } 6-4=2 \\
& =7+5(8) & & \text { Evaluate the exponential expression: } \\
& =7+40 & & 2^{3}=2 \cdot 2 \cdot 2=8 \\
& =47 & & \text { Multiply: } 5(8)=40 .
\end{aligned}
$$

Check Point 1 Evaluate $8+6(x-3)^{2}$ for $x=13$.
(2) Use mathematical models.

Formulas and Mathematical Models

An equation is formed when an equal sign is placed between two algebraic expressions. One aim of algebra is to provide a compact, symbolic description of the world. These descriptions involve the use of formulas. A formula is an equation that uses variables to express a relationship between two or more quantities.

Here are two examples of formulas related to heart rate and exercise.

Couch-Potato Exercise

Working It

The process of finding formulas to describe real-world phenomena is called mathematical modeling. Such formulas, together with the meaning assigned to the variables, are called mathematical models. We often say that these formulas model, or describe, the relationships among the variables.

EXAMPLE 2 Modeling the Cost of Attending a Public College

The bar graph in Figure P. 1 shows the average cost of tuition and fees for public four-year colleges, adjusted for inflation. The formula

$$
T=4 x^{2}+330 x+3310
$$

models the average cost of tuition and fees, T, for public U.S. colleges for the school year ending x years after 2000 .
a. Use the formula to find the average cost of tuition and fees at public U.S. colleges for the school year ending in 2010.
b. By how much does the formula underestimate or overestimate the actual cost shown in Figure P.1?

FIGURE P. 1
Source: The College Board

SOLUTION

a. Because 2010 is 10 years after 2000 , we substitute 10 for x in the given formula. Then we use the order of operations to find T, the average cost of tuition and fees for the school year ending in 2010.
$T=4 x^{2}+330 x+3310 \quad$ This is the given mathematical model.
$T=4(10)^{2}+330(10)+3310$ Replace each occurrence of x with 10 .
$T=4(100)+330(10)+3310$ Evaluate the exponential expression:
$T=400+3300+3310 \quad$ Multiply from left to right: $4(100)=400$ and
$T=7010$ $330(10)=3300$.

The formula indicates that for the school year ending in 2010, the average cost of tuition and fees at public U.S. colleges was $\$ 7010$.
b. Figure P. 1 shows that the average cost of tuition and fees for the school year ending in 2010 was $\$ 7020$.
The cost obtained from the formula, $\$ 7010$, underestimates the actual data value by $\$ 7020-\$ 7010$, or by $\$ 10$.

Blitzer Bonus || Is College Worthwhile?

"Questions have intensified about whether going to college is worthwhile," says Education Pays, released by the College Board Advocacy \& Policy Center."For the typical student, the investment pays off very well over the course of a lifetime, even considering the expense."

Among the findings in Education Pays:

- Mean (average) full-time earnings with a bachelor's degree in 2014 were $\$ 62,504$, which is $\$ 27,768$ more than high school graduates.
- Compared with a high school graduate, a four-year college graduate who enrolled in a public university at age 18 will break even by age 33 . The college graduate will have earned enough by then to compensate for being out of the labor force for four years and for borrowing enough to pay tuition and fees, shown in Figure P.1.

GREAT QUESTION!

Can I use symbols other than braces when writing sets using the roster method?

No. Grouping symbols such as parentheses, (), and square brackets, [], are not used to represent sets in the roster method. Furthermore, only commas are used to separate the elements of a set. Separators such as colons or semicolons are not used.

Find the intersection of two sets.

Φ Check Point 2

a. Use the formula $T=4 x^{2}+330 x+3310$, described in Example 2, to find the average cost of tuition and fees at public U.S. colleges for the school year ending in 2014.
b. By how much does the formula underestimate or overestimate the actual cost shown in Figure P.1?

Sometimes a mathematical model gives an estimate that is not a good approximation or is extended to include values of the variable that do not make sense. In these cases, we say that model breakdown has occurred. For example, it is not likely that the formula in Example 2 would give a good estimate of tuition and fees in 2050 because it is too far in the future. Thus, model breakdown would occur.

Sets

Before we describe the set of real numbers, let's be sure you are familiar with some basic ideas about sets. A set is a collection of objects whose contents can be clearly determined. The objects in a set are called the elements of the set. For example, the set of numbers used for counting can be represented by

$$
\{1,2,3,4,5, \ldots\} .
$$

The braces, $\}$, indicate that we are representing a set. This form of representation, called the roster method, uses commas to separate the elements of the set. The symbol consisting of three dots after the 5, called an ellipsis, indicates that there is no final element and that the listing goes on forever.

A set can also be written in set-builder notation. In this notation, the elements of the set are described but not listed. Here is an example:

$$
\begin{aligned}
& \{x \mid x \text { is a counting number less than } 6\} \text {. } \\
& \text { The set of all } x \quad \text { such that } \quad x \text { is a counting number less than } 6 \text {. }
\end{aligned}
$$

The same set written using the roster method is

$$
\{1,2,3,4,5\} .
$$

If A and B are sets, we can form a new set consisting of all elements that are in both A and B. This set is called the intersection of the two sets.

Definition of the Intersection of Sets

The intersection of sets A and B, written $A \cap B$, is the set of elements common to both set A and set B. This definition can be expressed in set-builder notation as follows:

$$
A \cap B=\{x \mid x \text { is an element of } A \text { AND } x \text { is an element of } B\}
$$

FIGURE P. 2 Picturing the intersection of two sets

FIGURE P. 3 Picturing the union of two sets

GREAT QUESTION:

How can I use the words union and intersection to help me distinguish between these two operations?
Union, as in a marriage union, suggests joining things, or uniting them. Intersection, as in the intersection of two crossing streets, brings to mind the area common to both, suggesting things that overlap.

Figure P. 2 shows a useful way of picturing the intersection of sets A and B. The figure indicates that $A \cap B$ contains those elements that belong to both A and B at the same time.

EXAMPLE 3 Finding the Intersection of Two Sets

Find the intersection: $\{7,8,9,10,11\} \cap\{6,8,10,12\}$.

SOLUTION

The elements common to $\{7,8,9,10,11\}$ and $\{6,8,10,12\}$ are 8 and 10. Thus,

$$
\{7,8,9,10,11\} \cap\{6,8,10,12\}=\{8,10\}
$$

Check Point 3 Find the intersection: $\{3,4,5,6,7\} \cap\{3,7,8,9\}$.

If a set has no elements, it is called the empty set, or the null set, and is represented by the symbol \varnothing (the Greek letter phi). Here is an example that shows how the empty set can result when finding the intersection of two sets:

Another set that we can form from sets A and B consists of elements that are in A or B or in both sets. This set is called the union of the two sets.

Definition of the Union of Sets

The union of sets A and B, written $A \cup B$, is the set of elements that are members of set A or of set B or of both sets. This definition can be expressed in set-builder notation as follows:

$$
A \cup B=\{x \mid x \text { is an element of } A \text { OR } x \text { is an element of } B\}
$$

Figure P. 3 shows a useful way of picturing the union of sets A and B. The figure indicates that $A \cup B$ is formed by joining the sets together.

We can find the union of set A and set B by listing the elements of set A. Then we include any elements of set B that have not already been listed. Enclose all elements that are listed with braces. This shows that the union of two sets is also a set.

EXAMPLE 4 Finding the Union of Two Sets

Find the union: $\{7,8,9,10,11\} \cup\{6,8,10,12\}$.

SOLUTION

To find $\{7,8,9,10,11\} \cup\{6,8,10,12\}$, start by listing all the elements from the first set, namely, $7,8,9,10$, and 11 . Now list all the elements from the second set that are not in the first set, namely, 6 and 12 . The union is the set consisting of all these elements. Thus,

$$
\{7,8,9,10,11\} \cup\{6,8,10,12\}=\{6,7,8,9,10,11,12\}
$$

Although 8 and 10 appear in both sets,
do not list 8 and 10 twice.
Check Point 4 Find the union: $\{3,4,5,6,7\} \cup\{3,7,8,9\}$.

Recognize subsets of the real numbers.

The Set of Real Numbers

The sets that make up the real numbers are summarized in Table P.1. We refer to these sets as subsets of the real numbers, meaning that all elements in each subset are also elements in the set of real numbers.

Table P. 1 Important Subsets of the Real Numbers

Name/Symbol	Description	Examples
Natural numbers \mathbb{N}	$\{1,2,3,4,5, \ldots\}$ These are the numbers that we use for counting.	2, 3, 5, 17
Whole numbers W	$\{0,1,2,3,4,5, \ldots\}$ The set of whole numbers includes 0 and the natural numbers.	0, 2, 3, 5, 17
Integers \mathbb{Z}	$\{\ldots,-5,-4,-3,-2,-1,0,1,2,3,4,5, \ldots\}$ The set of integers includes the negatives of the natural numbers and the whole numbers.	$-17,-5,-3,-2,0,2,3,5,17$
Rational numbers \mathbb{Q}	$\left\{\left.\frac{a}{b} \right\rvert\, a\right.$ and b are integers and $\left.b \neq 0\right\}$ This means that b is not equal to zero. The set of rational numbers is the set of all numbers that can be expressed as a quotient of two integers, with the denominator not 0 . Rational numbers can be expressed as terminating or repeating decimals.	$\begin{aligned} & -17=\frac{-17}{1},-5=\frac{-5}{1},-3,-2, \\ & 0,2,3,5,17 \\ & \frac{2}{5}=0.4 \\ & \frac{-2}{3}=-0.6666 \ldots=-0 . \overline{6} \end{aligned}$
Irrational numbers !	The set of irrational numbers is the set of all numbers whose decimal representations are neither terminating nor repeating. Irrational numbers cannot be expressed as a quotient of integers.	$\begin{aligned} \sqrt{2} & \approx 1.414214 \\ -\sqrt{3} & \approx-1.73205 \\ \pi & \approx 3.142 \\ -\frac{\pi}{2} & \approx-1.571 \end{aligned}$

TECHNOLOGY

A calculator with a square root key gives a decimal approximation for $\sqrt{2}$, not the exact value.

Real numbers

FIGURE P. 4 Every real number is either rational or irrational.

Notice the use of the symbol \approx in the examples of irrational numbers. The symbol means "is approximately equal to." Thus,

$$
\sqrt{2} \approx 1.414214
$$

We can verify that this is only an approximation by multiplying 1.414214 by itself. The product is very close to, but not exactly, 2:

$$
1.414214 \times 1.414214=2.000001237796
$$

Not all square roots are irrational. For example, $\sqrt{25}=5$ because $5^{2}=5 \cdot 5=25$. Thus, $\sqrt{25}$ is a natural number, a whole number, an integer, and a rational number $\left(\sqrt{25}=\frac{5}{1}\right)$.

The set of real numbers is formed by taking the union of the sets of rational numbers and irrational numbers. Thus, every real number is either rational or irrational, as shown in Figure P.4.

Real Numbers

The set of real numbers is the set of numbers that are either rational or irrational:
$\{x \mid x$ is rational or x is irrational $\}$.

The symbol \mathbb{R} is used to represent the set of real numbers. Thus,

$$
\mathbb{R}=\{x \mid x \text { is rational }\} \cup\{x \mid x \text { is irrational }\} .
$$

EXAMPLE 5 Recognizing Subsets of the Real Numbers

Consider the following set of numbers:

$$
\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi, 7.3, \sqrt{81}\right\} .
$$

List the numbers in the set that are
a. natural numbers.
b. whole numbers.
c. integers.
d. rational numbers.
e. irrational numbers.
f. real numbers.

SOLUTION

a. Natural numbers: The natural numbers are the numbers used for counting. The only natural number in the set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi, 7.3, \sqrt{81}\right\}$ is $\sqrt{81}$ because $\sqrt{81}=9$. (9 multiplied by itself, or 9^{2}, is 81 .)
b. Whole numbers: The whole numbers consist of the natural numbers and 0 . The elements of the set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi, 7.3, \sqrt{81}\right\}$ that are whole numbers are 0 and $\sqrt{81}$.
c. Integers: The integers consist of the natural numbers, 0 , and the negatives of the natural numbers. The elements of the set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi, 7.3\right.$, $\sqrt{81}\}$ that are integers are $\sqrt{81}, 0$, and -7 .
d. Rational numbers: All numbers in the set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi, 7.3, \sqrt{81}\right\}$ that can be expressed as the quotient of integers are rational numbers. These include $-7\left(-7=\frac{-7}{1}\right),-\frac{3}{4}, 0\left(0=\frac{0}{1}\right)$, and $\sqrt{81}\left(\sqrt{81}=\frac{9}{1}\right)$. Furthermore, all numbers in the set that are terminating or repeating decimals are also rational numbers. These include $0 . \overline{6}$ and 7.3 .
e. Irrational numbers:The irrational numbers in the set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}, \sqrt{5}, \pi\right.$, $7.3, \sqrt{81}\}$ are $\sqrt{5}(\sqrt{5} \approx 2.236)$ and $\pi(\pi \approx 3.14)$. Both $\sqrt{5}$ and π are only approximately equal to 2.236 and 3.14 , respectively. In decimal form, $\sqrt{5}$ and π neither terminate nor have blocks of repeating digits.
f. Real numbers: All the numbers in the given set $\left\{-7,-\frac{3}{4}, 0,0 . \overline{6}\right.$, $\sqrt{5}, \pi, 7.3, \sqrt{81}\}$ are real numbers.
\oint Check Point 5 consider the following set of numbers:

$$
\left\{-9,-1.3,0,0 . \overline{3}, \frac{\pi}{2}, \sqrt{9}, \sqrt{10}\right\} .
$$

List the numbers in the set that are
a. natural numbers
b. whole numbers
c. integers.
d. rational numbers
e. irrational numbers
f. real numbers.

The Real Number Line

The real number line is a graph used to represent the set of real numbers. An arbitrary point, called the origin, is labeled 0 . Select a point to the right of 0 and label it 1 . The distance from 0 to 1 is called the unit distance. Numbers to the right of the origin are positive and numbers to the left of the origin are negative. The real number line is shown in Figure P.5.

FIGURE P. 5 The real number line

GREAT QUESTION!

How did you locate $\sqrt{2}$ as a precise point on the number line in Figure P.6?
We used a right triangle with two legs of length 1 . The remaining side has a length measuring $\sqrt{2}$.

We'll have lots more to say about right triangles later in the book.

Real numbers are graphed on a number line by placing a dot at the correct location for each number. The integers are easiest to locate. In Figure P.6, we've graphed six rational numbers and three irrational numbers on a real number line.

FIGURE P. 6 Graphing numbers on a real number line

Every real number corresponds to a point on the number line and every point on the number line corresponds to a real number. We say that there is a one-to-one correspondence between all the real numbers and all points on a real number line.

Ordering the Real Numbers

On the real number line, the real numbers increase from left to right. The lesser of two real numbers is the one farther to the left on a number line. The greater of two real numbers is the one farther to the right on a number line.

Look at the number line in Figure P.7. The integers -4 and -1 are graphed.

FIGURE P. 7
Observe that -4 is to the left of -1 on the number line. This means that -4 is less than -1 .

$$
\begin{aligned}
& -4 \text { is less than }-1 \text { because }-4 \text { is to } \\
& \text { the left of }-1 \text { on the number line. }
\end{aligned}
$$

In Figure P.7, we can also observe that -1 is to the right of -4 on the number line. This means that -1 is greater than -4 .

$$
\begin{array}{ll}
-1 \text { is greater than }-4 \text { because }-1 \text { is to } \\
-1>-4 & \begin{array}{l}
\text { the right of }-4 \text { on the number line. }
\end{array}
\end{array}
$$

The symbols $<$ and $>$ are called inequality symbols. These symbols always point to the lesser of the two real numbers when the inequality statement is true.

The symbols $<$ and $>$ may be combined with an equal sign, as shown in the following table:

This inequality is true if either the < part or the $=$ part is true.	Symbols	Meaning	Examples	Explanation
	$a \leq b$	a is less than or equal to b.	$\begin{aligned} & 2 \leq 9 \\ & 9 \leq 9 \end{aligned}$	Because $2<9$ Because $9=9$
This inequality is true if either the > part or the $=$ part is true.	$b \geq a$	b is greater than or equal to a.	$\begin{aligned} & 9 \geq 2 \\ & 2 \geq 2 \end{aligned}$	Because $9>2$ Because $2=2$

[^0]: It is important to dig in and develop your problem-solving skills. Practice Plus Exercises provide you with ample opportunity to do so. (See page 407.)

 These exercises improve your understanding of the topics and help maintain mastery of the material. (See page 234.)

